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Abstract

In these notes, we discuss the theory of Neron models and compare it
with the theory of relative Picard functors. These notes are based on a
talk that the author gave at a student seminar at Harvard in winter 2007.
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1 The Neron Model

The theory of Neron models is motivated by the problem of degenerating abelian
varieties. Suppose that S is the spectrum of a discrete valuation ring. Given an
abelian variety At over the generic point of S, a natural question to ask is “how
to extend the abelian variety At to a family over all of S?”

In general, it is too much to ask that the family be extended in such a way
that the central fiber is an abelian variety. The idea of Neron is to try to extend
the family over the central point in such a way that the central fiber is a smooth
group variety, but to allow the central fiber to be non-proper.

Neron’s theory has had a number of applications in algebraic geometry and
number theory. These applications include:

• The theory of stable reduction of abelian varieties and stable reduction of
curves

• The Birch-Swinnerton-Dyer conjecture

• The theory of heights in diophantine geometry

• Lucia Caporaso’s work on the Neron model of the universal Jacobian

• Recent work of Jason Starr and Tom Graber
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In these notes, we review some of the basic theory of Neron models and dis-
cuss their relationship with the relative Picard functor. Much of our treatment
of these topics is based on the book [3] and the article [10]. In particular, most
of our examples are taken directly from Raynaud’s article.

Terminology and Notation. For the remainder of this note, we will work
over a fixed discrete valuation ring that we denote by S. Two important exam-
ples to keep in mind are the formal analytic disc, Spec(C[[z]]), and the spectrum
of the p-adic numbers Spec(Zp). The special point of S will be denoted by s,
while the generic point will be denoted t. The residue fields at these points are
denoted by k(s) and by k(t) respectively. Set k(t̄) equal to a fixed algebraic
closure of k(t) and let t̄ denote the spectrum of this field. We will frequently
write k(s) for Spec(k(s)) and similarly for k(t). In these notes, an abelian
variety over a field k is a proper, smooth, and geometrically connected k-group
scheme that is of finite type. We also need to define what is meant by a family
of curves. If T is a base scheme, then a relative T -curve is a flat, proper
morphism X → T with geometric fibers that are equidimensional of dimension
1. There is some disagreement over the appropriate definition of a projective
morphism. We will say that a morphism f : X → T is projective if X is
isomorphic to a closed subscheme of P(E ) for some quasi-coherent OS-module
E that is of finite type. This definition coincides with the usage of the term in
[5]. The relevant sections are 5.3 and 5.5.

Remark. In these notes, we will be working exclusively work over a base S
that is the spectrum of a discrete valuation ring. Much of the theory remains
true if the base S is allowed to be an arbitrary Dedekind scheme. It is, how-
ever, necessary that the base be 1-dimensional and regular. There has been
some work on extending the theory of Neron models to more complicated base
schemes, but serious issues arise. Some discussions of issues related to extending
the theory of Neron models can be found in Deligne’s article [4].

With the notation out the way, let us define Neron models:

Definitions. Suppose that At/k(t) is an abelian variety.
A model of the abelian variety At/k(t) is an S-scheme A/S together with

an identification of the generic fiber of A with At.
A Neron model of an abelian variety At/k(t) is an S-model A/S of At/k(t)

that is smooth and satisfies the Neron mapping property: for every smooth mor-
phism T → S and a k(t)-morphism ut : T |t → At, there is a unique S-morphism
u : T → A that extends u|t.

Remarks.

• The definition of a Neron model does not make use of the fact that At/k(t)
is an abelian variety. One can define the Neron model of an arbitrary
smooth k(t)-scheme, but this definition does not seem to have nice prop-
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erties in general. For example, one can show that P1
S/S is not the Neron

model of its generic fiber.

• The definition of the Neron model does not make explicit reference to
the group scheme structure of the Neron model. It follows from general
formalism that a Neron model has canonical S-group scheme structure.
For example, the multiplication law is constructed by applying the Neron
mapping property to T = A×SA and ut equal to the group lawm : At×k(t)

At → At of the abelian variety. It also follows from standard formalism
that the Neron model of At/k(t) is unique up to a unique isomorphism.

• The Neron mapping property should be thought of as a weakening of the
valuative criteria of properness. For any S-scheme A/S, there is a natural
map A(S) → A(k(t)) = At(k(t)). If A/S is either proper or satisfies the
Neron mapping property, then this map is bijective. In other words, both
of these conditions imply that every rational section of A → S extends
uniquely to a regular section. However, the Neron mapping property does
NOT imply that an arbitrary rational multi-section can be extended to a
regular multi-section. By contrast, this stronger extension property is a
consequence of the valuative criteria of properness.

• Unlike many algebro-geometric objects that are defined by universal prop-
erties, the Neron model does not commute with arbitrary extensions of the
base S. In other words, if S′ → S is an arbitrary extension of discrete val-
uation rings, then it need not be the case that AS′ is the Neron model of
its generic fiber. One can show that AS′ is the Neron model of its generic
fiber if S′ → S is faithfully flat and the ramification index of S′ over S is
1 (so a uniformizer of S maps to a uniformizer of S′). This assumption
is weaker than the assumption that S′ → S is étale since we are allowing
the residue extension of S′/S to be inseparable.

The basic existence theorem is:

Theorem 1. The abelian variety At/k(t) admits a Neron model that is S-
separated and of finite type over S.

Proof. There are two main tools that are used in the proof. The first tool is a
smoothening process. Given an arbitrary S-model for At/k(t), Neron gives a
procedure for modifying the given model into a smooth S-model. The second
tool is a general result on extending birational group laws to genuine group laws.
We refer the interested reader to the literature for details.

Neron’s original paper is [9]. A detailed modern treatment of the theorem
can be found in [3]. Another good article on Neron models is Artin’s article
[2].

Remark. In his original paper [9], Neron stated the above theorem with
the additional hypothesis that the residue field k(s) is perfect. In [3], it is shown
that this hypothesis can be removed.
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2 The Relative Picard Functor

Jacobians of smooth curves provide an important source of abelian varieties.
Given a curve Xt/k(t) over the generic point of S, the Neron model provides
one method for degenerating the Jacobian of Xt. An alternative approach would
be to first extend the curve Xt/k(t) to a family of curves over S and then try to
degenerate the Jacobian in such a way that reflects the geometry of the family
of curves. This idea leads us to the relative Picard functor.

Fix a S-curve f : X → S. The key definition is the following:

Definition. The relative Picard functor PicX/S : (S-sch)op → sets
is defined to be the fppf sheaf associated to the presheaf given by the rule
T 7→ Pic(XT )/Pic(T ). Here Pic denotes the set of isomorphism classes of line
bundles. The set Pic(T ) is considered a subset of Pic(XT ) via pullback.

There are a number of delicate technical issues that arise with this definition.
For example, it is not necessarily true that every element of PicX/S(T ) can be
represented by a line bundle on XT . In these notes, we omit any detailed
discussion of these issues and direct the interested reader to Kleiman’s excellent
article [8].

An important subsheaf of PicX/S is the subsheaf Pic0
X/S that parameterizes

degree 0 line bundles. When S is the spectrum of an algebraically closed field
and X/S is a smooth curve, the sheaf Pic0

X/S is represented by the Jacobian of
the curve.

We will be primarily interested in the geometry of Pic0
X/S rather than the

geometry of Pic0
X/S . We will often be sloppy and refer to Pic0

X/S as the relative
Picard scheme, although strictly speaking it is a component of the relative
Picard scheme.

There are two basic existence theorems for the relative Picard functor:

Theorem 2 (Grothendieck). If f : X → S is flat, projective, and has 1-
dimensional integral geometric fibers, then PicX/S can be represented by a smooth,
separated S-group scheme that is locally of finite type. Furthermore, the sub-
scheme Pic0

X/S is of finite type.

Proof. The original proof can be found in [7]. A modern exposition of the proof
can be found in [8].

Theorem 3 (Artin). If f : X → S is proper, flat, cohomologically flat (i.e.
f∗(OX) ∼= OS holds universally) and has geometric fibers that are equidimen-
sional of dimensional 1, then PicX/S can be represented by a formally smooth
S-group space that is locally of finite type.

Proof. This is a standard application of Artin’s representability theorem. The
proof can be found in [1].

Remarks:
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• The hypotheses of Grothendieck’s theorem imply that f is cohomologically
flat, so the hypotheses of Grothendieck’s theorem are strictly stronger than
those of Artin’s theorem.

• Similarly, the conclusion of Artin’s theorem is weaker than Grothendieck’s
theorem. There are examples of families of curves X/S for which the
relative Picard scheme exists only as a non-separated algebraic space and
the subspace Pic0

X/S is not locally of finite type.

• The fact that PicX/S is always smooth is particular to the case of curves
and essentially follows from the fact that the cohomological dimension of
f : X → S is 1. There are examples of surfaces over fields of positive
characteristic for which the Picard scheme is singular.

• The intuition behind the condition of cohomological flatness is that a curve
is not allowed to acquire extra global functions under specialization. It
follows from Zariski’s theorem on formal functions that the special fiber of
f : X → S has the same number of connected components as the generic
fiber, so these “extra” global functions can only exists when the special
fiber is non-reduced. We will see some examples later.

• Artin’s theorem is almost sharp. In section 8.2.1 of [10], Raynaud proves
that for a family of curves f : X → S the representability of PicX/S

together with some additional mild condition is equivalent to the cohomo-
logical flatness of f : X → S. Examples of families of curves f : X → S
such that f is not cohomologically flat, but PicX/S is representable are
related to certain technical issues related to our definition of the relative
Picard functor.

• A detailed discussion of cohomological flatness can be found in section 7 of
[10]. In particular, a general criteria for proving cohomological flatness can
be found in that article. One consequence of the criteria is the following.
Suppose that S is strict henselian and of characteristic (0, 0). Let f : X →
S be a family of curves such the special fiber Xs has no embedded points
and that for every minimal prime x of the special fiber Xs the local ring
OX,x of the total space is normal. If f∗(OX) = OS , then f : X → S is
cohomologically flat.

Let’s consider some examples. In studying our examples, we want to illus-
trate geometric content so we work over the complex numbers C. The base S
will be the strict henselization of a complex curve at a point. Geometrically,
this scheme roughly looks like an arbitrarily small neighborhood of P1

C in the
classical topology. n our examples, the schemes PicdX/S are all isomorphic.

In the examples, we will describe Pic0
X/S by describing the generic fiber and

the special fiber. For our choice of S, many of the technical issues concerning
the relative Picard functor simplify greatly. In particular, the special fiber of
Pic0

X/S is always complex group space and the group of C-valued points of this
space can be identified with the group of isomorphism classes of degree 0 line
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bundles on Xs. Similarly, the group of k(t̄)-valued points of the generic fiber of
Pic0

X/S can be identified with the group of isomorphism classes of line bundles
on Xt ⊗ k(t̄).

We will analyze the relationship between the special fiber of Pic0
X/S and the

generic fiber of Pic0
X/S by looking at the different ways in which the identity

section of the generic fiber can be specialized to the special fiber. We say that a
point g ∈ Pic0

X/S(k(s)) of the special fiber is a specialization of the identity
section of the generic fiber if there is a section σ ∈ Pic0

X/S(S) such that σ(t)
is trivial and σ(s) equals g. When Pic0

X/S is separated over S, the identity of
the generic fiber can only be specialized to the identity so the concept is only
interesting when Pic0

X/S is non-separated.
We present four examples in increasing order of complexity.

Example 1. Suppose that g : Y → P1 is a general pencil of plane cubics.
Such a pencil has a finite number of singular elements and every singular ele-
ment is a nodal cubic. Let S denote the strict henselization of P1 at a point
corresponding to a nodal cubic and let f : X → S be the restriction of the
pencil to S.

The family f : X → S satisfies the hypotheses of Grothendieck’s theorem,
so Pic0

X/S can be represented by a smooth, separated S-group scheme that is of
finite type.

The fibers of Pic0
X/S → S can be computed in a number of ways. For exam-

ple, the generic fiber is the Jacobian of a smooth genus 1 curve and hence an
elliptic curve. The special fiber can be computed by taking the normalization
of the nodal cubic curve and comparing line bundles on the nodal curve to line
bundles on the normalization. Such an argument shows that the special fiber is
the multiplicative group Gm.

Example 2: Now suppose that g : Y → P1 is a pencil that contains the plane
cubic curve given by the union of a line L and a quadric Q, but is otherwise
general. Again, let f : X → S denote the restriction of this pencil to the
strict henselization S of P1 at the point corresponding to the reducible cubic.
Because we constructed f : X → S from a family of plane curves, it follows that
f : X → S is cohomologically flat.

By Artin’s theorem, the relative Picard functor Pic0
X/S can be represented

by a formally smooth S-group space that is locally of finite type. It does not
follow from the theorems that we have stated, but one can show that the relative
Picard functor is in fact represented by a scheme. Let’s determine the fibers of
Pic0

X/S and figure out how the generic fiber specializes to the special fiber.
As in the first example, the generic fiber is an elliptic curve. What about

the special fiber? Unlike the previous example, the special fiber of Pic0
X/S has a

non-trivial discrete component. Given a line bundle L of degree 0 on Xs, we can
consider the bidegree (deg(L |L),deg(L |Q)). The sum of the bidegrees is equal
to the total degree, so deg(L |L) + deg(L |Q) = 0 but the individual terms can
otherwise be arbitrary. The subgroup of Pic0

X/S |s consisting of bidegree (0, 0)
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line bundles can be computed by, for example, comparing these line bundles
with line bundles on the normalization. Such a study shows that this group is
isomorphic to the multiplicative group Gm. Putting these facts together, we
can conclude that the special fiber of Pic0

X/S is isomorphism to Z×k(s) Gm.
Now let’s analyze how the generic fiber specializes to the special fiber. The

identity of the generic fiber can certainly specialize to the identity of the special
fiber. There are, however, other ways of specializing the identity of the generic
fiber. Consider the ideal sheaf IL of the line L in the total space X of the family.
The scheme X is regular, so the sheaf IL is a line bundle. The restriction of this
line bundle to the generic fiber Xt is trivial. On the other hand, the restriction
of IL to Q is the ideal sheaf of the two points where Q meets L and hence has
degree equal to −2. From the relation deg(L |L)+deg(L |Q) = 0, it follows that
the restriction of IL to L is degree 2. In summary, IL is a line bundle such that
the restriction to Xt is trivial and the restriction to Xs has bidegree (2,−2). In
particular, this line bundle defines a specialization of the identity of PicX/S |t to
a non-trivial line bundle. This shows that Pic0

X/S is NOT separated. Further
consideration shows that for every integer n there is a unique specialization of
the identity to a line bundle of bidegree (2n,−2n).

To conclude, the family of curves f : X → S is a family of curves that
satisfies the hypotheses of Artin’s theorem. The relative Picard scheme Pic0

X/S

is representable by a scheme that is not separated and not locally of finite type.

Example 3. Take the twisted cubic in P3 and try to smash the curve into a
planar curve. More formally, define a family of space curves Y → A1 by setting
the fiber over t 6= 0 equal to the image of the standard twisted cubic under the
automorphism [W,X, Y, Z] 7→ [W,X, Y, tZ] and then defining the fiber over 0 to
be the limit in the Hilbert scheme. One can check that this family can be taken
to be given by the equations:

t2(X +W )− Z2 = tX(X +W )− Y Z = XZ − tWY = Y 2 −X2(X +W ) = 0

Let S denote the strict henselization of A1 at the origin and f : X → S the
restriction of Y → A1 to S. The generic fiber of this family is the twisted space
cubic and hence isomorphic to P1. The special fiber is more interesting. One
can check that the special fiber is a non-reduced curve whose underlying reduced
subscheme is a nodal plane cubic. This curve has a unique embedded point at
the node. The space of global regular functions H0(Xs,OXs

) is 2-dimensional
and a basis is given by 1, z = Z/W . In particular, the structure morphism
f : X → S is not cohomologically flat.

The functor Pic0
X/S is formally smooth, locally finitely presented, and has

representable fibers, but we no longer know that Pic0
X/S is representable. Indeed,

it turns out that this functor is not representable. We can still compute the
structure of the fibers and analyze how the generic fiber specializes to the special
fiber.

The generic fiber of f : X → S is a smooth curve of genus 0, so the generic
fiber of Pic0

X/S is the trivial group. One can show that the special fiber of Pic0
X/S
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is canonically isomorphic to the connected component of the Picard variety of
the underlying reduced curve and hence is isomorphic to Gm. This is most easily
proven cohomologically. In particular, every line bundle on the special fiber can
be written as OXs

(p− q) for some smooth points p and q of Xs.
Let us now turn to the question as to which points in the special fiber are

specializations of the identity of the generic fiber. A typical line bundle L on
Xs can be written as OXs(p − q) for smooth points p and q of Xs. Because
we are working over a strict henselian base, these points can be extended to
sections σ, τ : S → X respectively. Consider the line OX(σ − τ) on the total
space. This line bundle restricts to the line bundle L on the special fiber Xs.
The restriction of OX(σ − τ) to the generic fiber must be trivial. This estab-
lishes that OX(σ − τ) induces a section of f : X → S that is a specialization
of the trivial line bundle to L . Since L was arbitrary, we have established
that EVERY line bundle on the (1-dimensional) special fiber of PicX/S is the
specialization of the identity. The relative Picard functor Pic0

X/S is not locally
separated and hence not representable.

Example 4. Our fourth example is a family of non-reduced curves. Let E/C
be a fixed elliptic curve with origin O. We can consider the product E ×C E as
a constant family of elliptic curves over the curve E via the second projection
map. Let S be the strict henselization of the curve E at the origin and let
f : X0 → S be the restriction of the constant family of E to S. The example
that we will examine is constructed from the family X0 → S. To construct
this family, we need an auxiliary line bundle. Define L to be the line bundle
O(∆ − O ×C E). Here ∆ is the diagonal of E ×C E. The scheme X is defined
to be the scheme whose underlying topological space is equal to the underlying
topological space of X and whose structure sheaf is equal to OX = OX0 ⊕L .
Here the ring structure on the direct sum is defined so that L is a square-zero
ideal in OX . It is immediately verified that X → S is proper, flat, and has
1-dimensional geometric fibers.

The family X → S can be visualized as follows. An element of this family
is a 1-st order neighborhood around the elliptic curve E. For a generic element
of this family, the 1-st order neighborhood is twisted in such a way that there
are no non-zero global functions that vanish at every point. In the special fiber,
the 1-st order neighborhood becomes untwisted in such a way that there is a
1-dimensional space of global functions that vanish at every point but have
non-zero derivatives.

The fibers of the relative Picard functor can be computed in terms of co-
homology of L . Consider the natural map Pic0

Xs/k(s) → Pic0
E/k(s) from the

Picard scheme of Xs to the Picard scheme of the underlying reduced subscheme
of Xs. A standard computation shows that this map is surjective and the kernel
is equal to the vector space scheme associated to H0(Xs,L ). The analogous
result holds on the geometric generic fiber as well. The fiber-wise cohomology
of L is h0(Xt,OXt) = 0 and h0(Xs,OXs) = 1. In particular, the group va-
riety Pic0

Xt̄/k(t̄) is isomorphic to the an elliptic curve while the group variety
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Pic0
Xs/k(s) is an extension of an elliptic curve by the additive group Ga. One

can show that scheme-theoretic closure of the identity in the special fiber of
Pic0

X/S is the subgroup Ga. As in example 3, it follows that the relative Picard
functor is not locally separated and hence not representable.

3 The Comparison Theorem

How does the relative Picard functor compare to the Neron model in the four
examples from the previous section? In the first example the relative Picard
scheme looks like a reasonable candidate for the Neron model of the generic
fiber, while in the second, third, and fourth examples the relative Picard functor
can not be isomorphic to the Neron model. The second example can not be a
Neron model because the relative Picard scheme is not S-separated, while the
third and fourth examples were not even representable by an algebraic space.

In the last three examples, an obvious obstruction to the relative Picard
scheme being the Neron model, or more generally having nice properties, is the
lack of separatedness. It is natural to consider instead the maximal separated
quotient of Pic0

X/S .

Definitions. Suppose that f : X → S is proper, flat, and has equidimen-
sional fibers of dimension 1. We define the S-group functor E/S to be the
scheme-theoretic closure of the identity in Pic0

X/S . This is defined to be
the fppf subsheaf of Pic0

X/S generated by those points of the form z ∈ Pic0
X/S(Z)

with the property that zt ∈ Pic0
X/S(Zt) is trivial and Z → S is flat. One can

check that if Pic0
X/S is representable, then this coincides with the usual notion

of scheme-theoretic closure.
The maximal separated quotient of Pic0

X/S is defined to be the fppf quo-
tient sheaf Pic0

X/S/E and is denoted Q0
X/S .

Remark. The process of taking scheme-theoretic closure is particularly
simple for families of schemes over a discrete valuation ring and the given func-
torial definition of scheme-theoretic closure is particular to this case. Suppose
that P → S is a morphism from an arbitrary scheme to the spectrum of a
discrete valuation ring and that Et is a closed subscheme of the generic fiber.
The scheme-theoretic closure Ēt of Et in P is characterized by the fact that it
is S-flat and the generic fiber is equal to Et. A discussion of these issues can be
found in [6] (EGA, IV, (2.8.5)).

The maximal separated quotient Q0
X/S has somewhat nicer properties than

the relative Picard functor:

Theorem 4. Suppose that f : X → S is proper, flat, and has equidimensional
geometric fibers of dimension 1. Then maximal separated quotient Q0

X/S is a
smooth, separated S-group scheme that is of finite type.
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Proof. This is proposition 8.0.1 in Raynaud’s paper [10].

We have the following result comparing the Neron model to the relative
Picard scheme:

Theorem 5. Suppose that f : X → S is proper, flat, and has equidimensional
fibers of dimension 1 and that the total space X is regular. Suppose further that
either k(s) is perfect or f : X → S admits a section. Then Q0

X/S is the Neron
model of its generic fiber.

Proof. This is theorem 8.1.4 in Raynaud’s paper [10].

Remarks: The hypotheses of the theorem can be weakened, but then be-
come somewhat more difficult to state. We refer the interested reader to Ray-
naud’s paper.

Let’s revisit the examples from the previous section in light of the previous
two theorems.

Example 1. It follows from theorem theorem 5 that Pic0
X/S is the Neron

model of its generic fiber.

Example 2. It follows from the theorem that Q0
X/S is the Neron model of

its generic fiber. From our earlier discussion of this example, we can see that
the special fiber of Q0

X/S is isomorphic to Gm × Z/2Z.

Example 3. In this example, the total space X is not regular so we can no
longer use theorem 5 of compare Q0

X/S to the Neron model of the generic fiber.
We can still compute Q0

X/S . It follows from our earlier discussion that Q0
X/S is

just the trivial S-group scheme.

Example 4. As in example 3, the total space X is not regular so we can
not cite theorem 5, but we can compute Q0

X/S . In this case, the group scheme
Q0

X/S is a family of elliptic curves.
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